Economic perspectives on nitrogen in farming systems

David Pannell
Centre for Environmental Economics and Policy

INI2016, 8 December 2016
What rate of N fertilizer would maximise a farmer’s profit?

\[N(\pi_{\text{max}}) < N(Y_{\text{max}}) \]

\[P_n = $1.41/\text{kg} \]
Flat payoff functions

What range of N application rates would give payoffs within 5% of the maximum payoff?
Flat payoff functions

- 22 to 80 kg/ha!!
- Varying the N rate within the vicinity of the optimum hardly matters in terms of farm profit

\[P_n = \$1.41/\text{kg} \]
Flat payoff functions

- This result is common/normal
- The width of the flat area varies, but it’s often pretty wide
- Not widely appreciated, but it’s not a new insight
- Jardine (1975) told agronomists about it and “observed such reactions as complete disbelief, blank incomprehension, incipient terror, and others less readily categorized”.

![Flat landscape images](image1.jpg) ![Flat landscape images](image2.jpg) ![Flat landscape images](image3.jpg)
Flat payoff functions: implications

- Farmers have flexibility – can adjust rates for other reasons (e.g. risk, environment) at low financial cost

\[Pn = $1.41/\text{kg} \]
Flat payoff functions: implications

- Precision agriculture technologies that adjust rates often not very beneficial to farmers
Flat payoff functions: implications

- If farmers are over-fertilizing, it probably costs them very little
- Almost no financial incentive to cut back
Research or extension to recommend N rates is often not very beneficial to farmers (unless they are off the payoff plateau)
N rates and Risk

- Farming is risky
- Most farmers are prepared to sacrifice some expected profit to reduce risk (they are “risk averse”)
- Risk aversion varies between farmers
 - High variance within a population
 - Tends to be relatively low for wealthy farmers
 - Higher for low-income farmers
Are high N rates more risky or less risky?

- Some suggest ↑N ⇔ ↓risk
- Evidence shows the opposite

Simulated wheat yield responses to applied N fertiliser, Wagga Wagga

Risk aversion reduces optimal N rate (but not much)
Adoption of BMPs by farmers

- Enormous interest in what determines farmers’ decisions about adoption of new farming practices

- Important for
 - Research planning
 - Extension priorities
 - Policy design

- Thousands of studies

- Some clear insights
 - Human dimensions
 - The technology
Learning process - stages

- Awareness of problem or opportunity
- Non-trial evaluation
- Trial evaluation
- Adoption (or not)
- Review and modification
- Disadoption
Social factors influence adoption

- Related to communication, trust, credibility
 - Social networks
 - Physical proximity
 - Extension

- Other personal and demographic factors
 - Off-farm income
 - Property size
 - Age/education
 - Goals
A variety of goals

(i) material wealth & financial security
(ii) environmental protection and enhancement
(iii) social approval and acceptance
(iv) personal integrity, ethics
(v) balance of work and lifestyle
The new technology/practice

- Relative advantage (relative to whatever it replaces)
 - Profit (short-term and long-term profits, farming system effects, adjustment costs, opportunity costs)
 - Riskiness
 - Consistency with other goals (environmental, social, personal)
- Trialability (how easy is it to get over the learning hump?)
 - Observability
 - Novelty
 - Long time scales
Predicting adoption of BMPs

- "ADOPT": Adoption & Diffusion Outcome Prediction Tool
- 22 key questions about
 - the target farmers
 - the practice
- Quantitative predictions
 - Peak level of adoption
 - Speed of adoption
- Developed & developing country versions
- www.csiro.au/adopt
Policy mechanism choice

- Public: Private Benefits Framework
- Recommends most appropriate and cost-effective mechanism to encourage behaviour change
- Depends on the public and private benefits and costs of the new behaviour
- www.DavidPannell.net
Simple but comprehensive tool to evaluate public investments in environmental improvements

Integrates information about behaviour change with values, project effectiveness, project risks, time lags, and life-cycle costs to provide
 - Robust project logic
 - Benefit: Cost Analysis
 - Public: Private Benefits Framework

www.inffer.com.au
MOOC: “Agriculture, Economics and Nature”

www.DavidPannell.net
N rates: N taxes and N subsidies

Payoff ($/ha) vs Nitrogen (kg/ha)

- Pn = $1.41/kg
- Pn = $0.70/kg
- Pn = $0.35/kg
- Pn = $2.82/kg