Temporary immobilisation promotes high nitrogen use efficiency of irrigated rice

John AngusA, Peter BaconB and Russell ReinkeC

ACSIRO Agriculture and Food, Canberra
BWoodlots and wetlands, Sydney
CInternational Rice Research Institute, Philippines
Background to Riverina rice

- Riverina: 200 - 400 km north of Melbourne
- Fully irrigated, high solar radiation, few pests
- Average yield of medium grain rice 11 t/ha
- Average fertiliser use ≈ 180 kg N ha$^{-1}$, $\approx \frac{2}{3}$ before flooding
- NUE in farm survey $\approx 60\%$ above-ground N / N applied
- Why is NUE relatively high under these conditions?
Rice yield in response to 200 kg N/ha as urea applied at permanent flood (PF) or panicle initiation (PI)

<table>
<thead>
<tr>
<th></th>
<th>Yield (t/ha)</th>
<th>NUE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0N</td>
<td>7.3</td>
<td></td>
</tr>
<tr>
<td>200N – PF*</td>
<td>13.6</td>
<td>76</td>
</tr>
<tr>
<td>200N – PI*</td>
<td>11.4</td>
<td>39</td>
</tr>
</tbody>
</table>
Why is pre-flood N application so efficient?

- Hypothesis 1: urea granules are flushed below the depth of denitrification.
Why is pre-flood N application so efficient?

Hypothesis 2: temporary immobilisation of fertiliser followed by remineralisation

Continued crop-N uptake despite low amount of soil mineral N. Was this N remineralised after immobilisation?