Annual crop legumes may not mitigate greenhouse gas emissions because of the high carbon cost of nitrogen fixation.

David Herridge1 and Pip Brock2
1University of New England
2NSW Dept Primary Industries
Greenhouse gas emissions of legume fixed N vs fertiliser N

- N_2-fixing legumes produce less greenhouse gas (CO_2 and N_2O) emissions than N-fertilised crops because of:
 - Emissions of CO_2 from production and transport of fertiliser N and from dissolution of urea in the soil
 - Greater emissions of N_2O from soil associated with fertiliser N use than from N_2 fixing legumes
 - In GHG emissions accounting there are no emissions (CO_2 or N_2O) directly attributed to N_2 fixation (IPCC 2006)

- Increased use of N_2-fixing legumes represents potentially-effective strategy for GHG mitigation

Seasonal profiles of N_2O emissions – fertiliser N and legume fixed N

- Data from N_2O emission monitoring in northern NSW
- Clearly, less emissions from the N_2 fixing chickpea than from the N-fertilised canola
- Data typical of many data sets from Australia and elsewhere (used to test mitigation strategies and calculate EFs)
- Supports the notion that substitution of fertiliser N inputs by legume fixed N results in reduced N_2O emission...

Greenhouse gas emissions for wheat, canola and field pea – southern NSW

- Total GHG emissions determined for wheat (3.0 t/ha), canola (2 t/ha) and field pea (1.8 t/ha) using Life Cycle Assessment (LCA)
- Emissions of N₂O est. using EF of 0.2% (Aust Govt 2015)
- Emissions highest for N-fertilised canola (840) and lowest for N₂-fixing field pea (530)
- Differences related to fertiliser N inputs
 - Canola 100N
 - Wheat 60N
 - Field pea 0N (100N fixed)
- But, soil C changes not included

Soil C changes and crop residues

- **But, soil C changes not included...**
- Can represent a major source or sink of CO$_2$ emissions
- Soil C changes, in the absence of erosion losses, largely determined by difference between residue C inputs and soil respiration
- In many grain cropping LCAs, assumption is that soil C stocks do not change
- N$_2$-fixing legumes don’t grow as well as mineral N-dependent cereal and oilseed crops....
Legume, cereal and canola yields

- Statistical and empirical data tell us that average \textbf{grain yields} of legumes ca. 30% less than those of cereals.
- Not because of lower harvest index (HI); average HIs from database (Unkovich et al. 2010) were 0.37 (wheat) and 0.37 (legumes) but 0.28 (canola).
- Average \textbf{biomass yields} of legumes also 30% less than those of cereals.
- Why is that?

Source: FAOSTAT (2016)

Source: Unkovich et al. (2010) involving ca. 23,000 grain values and ca. 1,700 shoot biomass values.
Legume fixed N is not free....

- There is a C cost of N₂ fixation by nodulated legumes related to the process of N₂ fixation, plant and bacterial cell maintenance etc., a respiratory cost.
- Values in table from glasshouse-cultured plants and theoretical calculations vary 6-17 kg CO₂/kg N fixed.
- Minchin and Witty (Plant Respiration, Springer, 2005) summarised current knowledge, reporting 18-37 kg CO₂/kg N with average of 24 kg CO₂/kg N fixed.
- Jensen ES (1986) data showed fully N₂ fixing pea had 37% less DM than fully N-dependent plants and there was a loss 19.8 g DM/g N fixed, equivalent to 29 g CO₂/g N fixed.

<table>
<thead>
<tr>
<th>Crop</th>
<th>C resp/N fixed</th>
<th>CO₂ resp/N fixed (g/g)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cowpea</td>
<td>1.5</td>
<td>5.7</td>
<td>Layzell DB et al. (1979) Plant Physiol. 64:888-91</td>
</tr>
<tr>
<td>White lupin</td>
<td>3.6</td>
<td>13.4</td>
<td></td>
</tr>
<tr>
<td>Nodulated soybean</td>
<td>5.2</td>
<td>19.0</td>
<td>Finke RL et al. (1982) Plant Physiol. 70:1178-84</td>
</tr>
<tr>
<td>Nitrate-fed soybean</td>
<td>2.7</td>
<td>9.7</td>
<td></td>
</tr>
<tr>
<td>Diff</td>
<td>2.5</td>
<td>9.3</td>
<td></td>
</tr>
</tbody>
</table>
Legume fixed N is not free....

- What about data for field-grown legumes?
- Data sets from Doughton JA et al. (1993) AJAR 44:1403-13 involving chickpea and Herridge DF et al. (1990) Plant Physiol. 93:708-16 involving irrigated soybean (each value mean of 7 cvs) indicate:
 - Fully N\textsubscript{2} fixing chickpea, soybean had ca. 30% less DM, C than fully N-dependent plants
 - 13.6 kg DM reduced/kg N fixed = 5.44 kg C or 19.9 kg CO\textsubscript{2}/kg N fixed (chickpea)
 - 13.8 kg DM reduced/kg N fixed = 5.52 kg C or 20.2 kg CO\textsubscript{2}/kg N fixed (soybean)
Soil C changes and crop residues

- **But, soil C changes not included...**
- Soil C changes, in the absence of erosion losses, largely determined by difference between residue C inputs and soil respiration
- Can represent a major source or sink of CO$_2$ emissions
- In many grain cropping LCAs, assumption is that soil C stocks do not change
- N$_2$-fixing legumes don’t grow as well as mineral N-dependent cereal and oilseed crops (now know why)
- **Reduction in biomass means less residue C returned to the soil from legumes after grain harvest**
Soil C changes....

- Back to the LCA and impacts of the different crops on soil C
- Values in table modelled using Nbudget (Herridge 2013*); difficult even impossible to measure for single crops (50 t C/ha backgrounds). Assumed:
 - annual mineralisation from SOM of 80 kg N/ha (880 kg C/ha)
 - 5% fertiliser N immobilised
 - 30-35% residue C incorporated into SOM (Ladd JN (1987)\(^1\))
 - HIs of 0.40 for wheat, 0.28 for canola, 0.37 for field pea
 - AG+BG biomass = AG biomass*1.4

<table>
<thead>
<tr>
<th>Crop or sequence</th>
<th>Grain yield (t/ha)</th>
<th>Above-ground biomass (t/ha)</th>
<th>AG+BG residue biomass (t/ha)</th>
<th>AG+BG residue C (t/ha)</th>
<th>C retained in soil (t/ha)(^1)</th>
<th>Net change in soil C (t/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>3.0</td>
<td>7.4</td>
<td>7.2</td>
<td>2.88</td>
<td>0.86</td>
<td>+0.02</td>
</tr>
<tr>
<td>Canola</td>
<td>2.0</td>
<td>7.1</td>
<td>7.7</td>
<td>3.09</td>
<td>1.08</td>
<td>+0.26</td>
</tr>
<tr>
<td>Field pea</td>
<td>1.8</td>
<td>4.9</td>
<td>4.8</td>
<td>1.94</td>
<td>0.68</td>
<td>-0.20</td>
</tr>
</tbody>
</table>

*Herridge DF (2013). Managing legume and fertiliser N for northern grains cropping. GRDC, Canberra. 87 pp. (see poster this Conference session 4A)
Soil C changes....

Including estimated changes in soil C in GHG (C footprint) LCAs reverses the order with canola and canola-wheat sequence having the lowest C footprint and field pea and field pea-wheat sequence the highest.

<table>
<thead>
<tr>
<th>Crops and sequences</th>
<th>Total GHG emissions (kg CO₂-e/ha)</th>
<th>Changes in soil C (kg CO₂-e/ha)</th>
<th>C footprint (kg CO₂-e/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual crops</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheat 60N</td>
<td>676</td>
<td>+60</td>
<td>617</td>
</tr>
<tr>
<td>Canola 100N</td>
<td>840</td>
<td>+940</td>
<td>-100</td>
</tr>
<tr>
<td>Field pea 0N (100N fixed)</td>
<td>530</td>
<td>-740</td>
<td>1270</td>
</tr>
<tr>
<td>2-year sequences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheat 60N–wheat 60N</td>
<td>1350</td>
<td>+146</td>
<td>1204</td>
</tr>
<tr>
<td>Canola 100N–wheat 60N</td>
<td>1517</td>
<td>+1136</td>
<td>380</td>
</tr>
<tr>
<td>Field pea (100N)–wheat 40N</td>
<td>1114</td>
<td>-366</td>
<td>1480</td>
</tr>
</tbody>
</table>
Conclusions

- Uncertainties in constructing LCIs and quantifying C footprints of crops and sequences
- Agricultural grain legumes fix 40-50 million tonnes N annually, rate highly for environmental impact categories, e.g. fossil fuel energy demand, eutrophication potential, but not necessarily for global warming potential (GHG emissions)
- There is a direct C cost of N\textsubscript{2} fixation for the legume that results in ca. 13.8 kg DM loss/kg N fixed (20 kg CO\textsubscript{2}/kg N fixed). This direct cost is not factored into GHG emissions accounting
- Simple modelling suggests the loss of legume DM translates into reduced residue C returned to the soil and reduced incorporation of C into soil OM
- In reducing the C (and other) footprint of grain cropping, need to be strategic with crop sequences optimising N inputs from legume N\textsubscript{2} fixation (high yields, low min-N soils) and C inputs from canola and cereals (high yields)
- Definitely needs more analysis