Dual effects of nitrification inhibitors on N$_2$O emission from agriculture

Shu Kee Lam1, Helen Suter1, Rohan Davies2, Mei Bai1, Jianlei Sun1, Arvin R Mosier1, Deli Chen1

1 Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Australia
2 BASF Australia Ltd., Australia
• N₂O: a greenhouse gas approximately 300 times more potent than CO₂

• Global agriculture contributes around 60% of total anthropogenic N₂O emission (Ciais et al. 2013).

• Nitrification inhibitors are recommended by the IPCC as a potential mitigation option for agricultural N₂O emission.

• Nitrification inhibitors: NH₄⁺ ⇌ NO₃⁻
Nitrification inhibitors decrease N_2O emission by 31–48% across diverse agricultural ecosystems.

However the inhibitors prolong the retention of NH_4^+ in soil, and increase NH_3 emission by 20–40% (meta analyses by Akiyama et al., 2010; Qiao et al., 2015)

NH_3 deposition:
- a major threat to environmental quality and ecosystem biodiversity (Erisman et al. 2008)
- indirectly contributes to N_2O emission (van der Gon & Bleeker 2005)
• Previous meta-analyses
 – included studies focussed on either N₂O or NH₃
 – expressed the effect as % change, not absolute difference in nitrogen

• No review on studies that simultaneously measure N₂O and NH₃ emissions in the field under the treatment of nitrification inhibitors
Methodology

- Literature search: Web of Science, Scopus, CAB Abstracts, Academic Search complete and Google Scholar

- IPCC emission factor EF$_4$ (indirect N$_2$O emission from NH$_3$ volatilization and deposition):
 - Default: 1%
 - Upper range: 5%
<table>
<thead>
<tr>
<th>Agricultural system</th>
<th>Inhibitor</th>
<th>Direct N\textsubscript{2}O emission</th>
<th>NH\textsubscript{3} volatilization</th>
<th>Overall NI effect on N\textsubscript{2}O emission</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>Amount (kg N ha-1) (I)</td>
<td>%</td>
</tr>
<tr>
<td>Cropping</td>
<td>N-serve</td>
<td>–49.9</td>
<td>–0.57</td>
<td>+64.9</td>
</tr>
<tr>
<td>Cropping</td>
<td>N-serve</td>
<td>–19.2</td>
<td>–0.27</td>
<td>+37.5</td>
</tr>
<tr>
<td>Cropping</td>
<td>DCD</td>
<td>–20.4</td>
<td>–0.79</td>
<td>–3.7</td>
</tr>
<tr>
<td>Cropping; pasture</td>
<td>DCD</td>
<td>–52.3</td>
<td>–1.36</td>
<td>+3.1</td>
</tr>
<tr>
<td>Cropping; pasture</td>
<td>DCD</td>
<td>–46.5</td>
<td>–0.52</td>
<td>+6.1</td>
</tr>
<tr>
<td>Pasture</td>
<td>PD</td>
<td>–10.6</td>
<td>–0.23</td>
<td>+4.0</td>
</tr>
<tr>
<td>Pasture</td>
<td>DCD</td>
<td>–56.8</td>
<td>–1.24</td>
<td>–0.8</td>
</tr>
<tr>
<td>Pasture</td>
<td>DCD</td>
<td>–30.1</td>
<td>–0.38</td>
<td>+7.7</td>
</tr>
<tr>
<td>Pasture</td>
<td>DCD</td>
<td>–42.1</td>
<td>–2.93</td>
<td>+35.5</td>
</tr>
<tr>
<td>Pasture</td>
<td>DCD</td>
<td>–40.5</td>
<td>–2.15</td>
<td>+13.3</td>
</tr>
<tr>
<td>Pasture</td>
<td>DCD</td>
<td>–37.1</td>
<td>–4.47</td>
<td>+43.4</td>
</tr>
<tr>
<td>Pasture</td>
<td>DCD</td>
<td>–46.8</td>
<td>–4.33</td>
<td>+18.2</td>
</tr>
<tr>
<td>Pasture</td>
<td>DCD</td>
<td>–38.6</td>
<td>–4.40</td>
<td>+9.1</td>
</tr>
<tr>
<td>Pasture</td>
<td>DCD</td>
<td>–20.0</td>
<td>–0.30</td>
<td>+17.2</td>
</tr>
<tr>
<td>Pasture</td>
<td>DMPP</td>
<td>–7.9</td>
<td>–0.18</td>
<td>+13.9</td>
</tr>
<tr>
<td>Pasture</td>
<td>DMPP</td>
<td>–8.8</td>
<td>–0.39</td>
<td>–51.7</td>
</tr>
<tr>
<td>Pasture</td>
<td>DMPP</td>
<td>–29.1</td>
<td>–4.51</td>
<td>+42.0</td>
</tr>
</tbody>
</table>

Lam et al. 2016, *Global Change Biology*
Knowledge gap

- No study on vegetable production systems (intensive N input)
- Chamber techniques for \(\text{N}_2\text{O} \) (closed) and \(\text{NH}_3 \) (open) emissions were widely used
Case study—vegetable farm

- The National Agricultural Nitrous Oxide Research Program (NANORP) in Australia

- Vegetable production system
 - Boneo, Victoria
 - Chicken manure with and without 3,4-dimethylpyrazole phosphate (DMPP)
 - 255 kg N ha\(^{-1}\) as manure; 39 kg N ha\(^{-1}\)
 Nitrophoska® x 5
Micrometeorological methods

NH₃ and N₂O measurements

- open-path Fourier transform infrared (FTIR) spectroscopy
- paddock-scale (4 ha); continuous; non-intrusive
DMPP effect on NH₃ and N₂O emission

N₂O
- DMPP: 5.7 kg N ha⁻¹
- + DMPP: 3.6 kg N ha⁻¹
decreased by 37%

NH₃
- DMPP: 12.4 kg N ha⁻¹
- + DMPP: 17.2 kg N ha⁻¹
increased by 39%
Nitrification inhibitors effectively decrease N$_2$O emission.

This beneficial effect can be weakened or even reversed by the increase in indirect N$_2$O emission from deposited NH$_3$.

The inclusion of indirect N$_2$O emission is critical for evaluating the effectiveness of nitrification inhibitors in mitigating greenhouse gas emissions from agriculture.
Recommendations

• Appropriate NH$_3$ mitigation measures should be taken where nitrification inhibitors are used:
 – double inhibitor (combining nitrification and urease inhibitors)
 – NH$_4^+$ based N input: substances with a high affinity for binding onto NH$_4^+$ ions e.g., zeolite and lignite
 – where practical, manure/fertilizers should be incorporated into soil
Acknowledgements

Funding bodies
Australian Government Department of Agriculture
Incitec Pivot Fertilisers

Landholder
Lamattina, Australia

Field and laboratory assistance
Trevor Coates, Sima Mazaherinia, Eric Ireland, Rifaath Hussain, Muhammad Shakir

© Copyright The University of Melbourne 2011