Assessing three nitrogen use performance indicators for pig supply chains in East and Southeast Asia

Aimable Uwizeye, Pierre Gerber, Rogier Schulte, Imke de Boer
LEAP PARTNERSHIP

7th International Nitrogen Initiative Conference, 4th – 8th December 2016
Melbourne, Australia
Outline

• Goal

• Nitrogen use performance indicators

• Results for Pig supply chains

• Take home messages
Key figures on livestock

- 25% of the protein consumed
- 1/4 of people depend on livestock
- 40% of the global GDP of agriculture
- +70% demand for animal products by 2050

Land use:
- 25% Pastures
- 25% Feed crops
- 5% Human - induced greenhouse gas emissions

7th International Nitrogen Initiative Conference, 4th – 8th December 2016
Melbourne, Australia
Pig supply chains are developing rapidly with an average growth of 3%
1. Goal

Evaluate the Nitrogen use performance indicators for pig supply chains in ESEA.
2. N use performance indicators?

- Life cycle approach
- Definition of system boundary (cradle to primary processing)
- Considerations of all N flows including crop residues and manure recycled
- All materials exported are considered as co-products e.g. Manure, maize stover
- Need for a hotspot indicator
N use performance framework

Loss Pathway:
- Gaseous Loss: denitrification (N_2O), volatilization (NH_3)
- Leaching: NO_3^-, NH_4^+, Organic N, PO_4^{3-}

Migration into the environment and impacts

Total Losses

Co-products e.g. grain, oil
Co-products Other animals species
Co-products e.g. Whey, hides, renderables

Crop and Pasture Production

Animal Production

Fossil fuel

Unprocessed products

Consumer

Migration into the environment and impacts

Uwizeye et al., 2016

7th International Nitrogen Initiative Conference, 4th – 8th December 2016
Melbourne, Australia
Supply-and-use matrix

PROD: Products of unit processes from the system

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prod</td>
<td></td>
<td>10.00</td>
<td>-</td>
<td>-</td>
<td>10.00</td>
<td>-</td>
<td>2.00</td>
<td>100.00</td>
<td>0.00</td>
<td>-22.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Process</td>
<td></td>
<td>-</td>
<td>10.00</td>
<td>-</td>
<td>-</td>
<td>50.00</td>
<td>-</td>
<td>50.00</td>
<td>-15.00</td>
<td>-15.00</td>
<td>50.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>20.00</td>
<td>-</td>
<td>-</td>
<td>12.50</td>
<td>20.00</td>
<td>-5.50</td>
<td>-5.50</td>
<td>20.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100.00</td>
<td>50.00</td>
<td>40.00</td>
<td>100.00</td>
<td>35.00</td>
<td>14.50</td>
<td>100.00</td>
<td>12.50</td>
<td>45.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

INP: Inputs to the unit processes (crop, animal, process) from the system

RES: Resources mobilization from the nature other sector “new N”

SC: Change in stock

NNB: Loss from unit processes
N use performance indicators

Stage-NUE

\[
NUE_i = \frac{PROD_i + SC_i}{INP'_i + RES_i}
\]

Life-cycle-NUE

\[
RES^* = RES \cdot \left(PROD - INP + SC \right)^{-1}
= RES \cdot A^{-1}
\]

\[
\text{Life_cycle_NUE} = 1/RES^*_\text{processing}
\]

Life-cycle Net nitrogen balance

\[
\text{Life-cycle-NNB}_i = \frac{\sum NNB_i \times AF_i}{A_i}
\]

Nitrogen hotspot index

\[
NHI_i = \frac{\sigma(\text{NNBi})}{\mu(\text{NNBi})} \times 100
\]
Backyard pig supply chains

- 56% of total pig population
- Scavenging and swill from households.
- Poor MMS
- Livelihoods and food security
Intermediate Pig supply chains

- 24% of total pig population
- Imported feed and swill from households.
- Poor MMS
- Market oriented
Industrial Pig supply chains

- 20% of total pig population
- Imported feed.
- Confined
- Developed MMS
- Market oriented (export)
Take home message

• Manure management system, production inefficiencies, and animal health are relatively the drivers of poor N use performance indicators in backyard and intermediate supply chains;

• Export of manure to no-feed crop may relatively increase the efficiency of industrial pig supply chains as the subsequent losses are not allocated to the animal production;

• Combination of three indicators, “NUE”, “NHI”, “NNB” can facilitate the design of smart improvement interventions of N use management

• Large potential improvements in N management at the crop production and manure management stage;
Aimable UWIZEYE, PhD Fellow, Wageningen University
FAO – AGAL – LEAP Partnership
Livestock & Environment Analyst
E-mail: aimable.uwizeye@fao.org
Twitter: aimableuw